
Cptr350 Chapter 4 — The Processor – Advanced Material 1

COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

5th
Edition

Chapter 4

The Processor
Advanced Issues

Review: Pipeline Hazards
n Structural hazards

n Design pipeline to eliminate structural hazards.
n Data hazards – read before write

n Use data forwarding inside the pipeline.
n For those cases that forwarding won’t solve (e.g., load-use)

include hazard hardware to insert stalls in the instruction stream.
n Control hazards – beq, bne,j,jr,jal

n Stall – hurts performance.
n Move decision point as early in the pipeline as possible – reduces

number of stalls at the cost of additional hardware.
n Delay decision (requires compiler support) – may not feasible for

deeper pipes.
n Predict – with even more hardware, can reduce the impact of

control hazard stalls even further if the branch prediction (Branch
History Table) is correct and if the branched-to instruction is
cached (Branch Table Buffer).

Cptr350 Chapter 4 — The Processor – Advanced Material 2

Exceptions and Interrupts

n “Unexpected” events requiring attention
n Different ISAs use the terms differently.

n Exceptions (sometimes called Traps)
n Arises within the CPU

n e.g., undefined opcode, overflow, syscall, divide by zero, …

n Interrupt
n Comes from an external I/O controller.

n Dealing with them without sacrificing performance is
impossible.

Handling Exceptions

n In MIPS, exceptions managed by a System Control
Coprocessor (CP0).

n Save PC of offending (or interrupted) instruction in the
Exception Program Counter (EPC).

n Save indication of the problem in the Cause Register.
n Jump to handler at hard address 8000 0018.

Cptr350 Chapter 4 — The Processor – Advanced Material 3

An Alternate Mechanism
n Vectored Interrupts

n Handler address determined by the cause. This is very
common in embedded processors.

n Example:
n Undefined opcode: C000 0000
n Overflow: C000 0020
n …: C000 0040

n Instructions either:
n Deal with the interrupt.
n Jump to the real handler.
n Pass control to the OS.

Multiple Exceptions

n Pipelining overlaps multiple instructions
n Could have multiple exceptions at once.

n Simple approach: deal with exception from earliest
instruction
n Flush subsequent instructions.
n “Precise” vs. “imprecise” exception approach.

n In complex pipelines
n Multiple instructions issued per cycle.
n Out-of-order completion.
n Maintaining precise exceptions is difficult.

Cptr350 Chapter 4 — The Processor – Advanced Material 4

Precise vs. Imprecise Exceptions

n An interrupt that leaves the machine in a well-defined state is
called a precise interrupt. Such an interrupt has four
properties:
n The Program Counter (PC) is saved in a known place.
n All instructions before the one pointed to by the PC have fully executed.
n No instruction beyond the one pointed to by the PC has been executed.
n The execution state of the instruction pointed to by the PC is known.

n An interrupt that does not meet these requirements is called
an imprecise interrupt.

Where in the Pipeline Exceptions Occur

n Arithmetic overflow:

n Undefined instruction:

n TLB or page fault:

n I/O service request:

n Hardware malfunction:

A
LUIM Reg DM Reg

Stage(s)? Synchronous?

EX yes

yes

yes

no

no

ID

IF, MEM

any

any

n Multiple exceptions can occur simultaneously in a single
clock cycle.

http://en.wikipedia.org/wiki/Program_counter

Cptr350 Chapter 4 — The Processor – Advanced Material 5

Extracting Yet More Performance
n Superpipelining - Increasing the depth of the pipeline to

increase the clock rate
n The more stages in the pipeline, the more forwarding/hazard

hardware needed and the more pipeline latch overhead (i.e., the
pipeline latch accounts for a larger and larger percentage of the
clock cycle time).

n Multiple-issue – Fetching and executing more than one
instruction at a time (expand every pipeline stage to
accommodate multiple instructions)

n The instruction execution rate, CPI, will be less than 1, so
instead we use IPC - instructions per clock cycle

n E.g., a 6 GHz, four-way multiple-issue processor can
execute at a peak rate of 24 billion instructions per second
with a best case CPI of 0.25 or a best case IPC of 4.

Types of Parallelism

n Instruction-level parallelism (ILP) – a measure of the
average number of instructions in a program that a
processor might be able to execute at the same time
n Mostly determined by the number of data dependencies

and control dependencies in relation to the number of
other instructions.

n Machine-level parallelism – a measure of the ability of
the processor to take advantage of the ILP of the
program
n Determined by the number of instructions that can be

fetched and executed at the same time.
n To achieve high performance, we need both ILP and

machine-level parallelism.

Cptr350 Chapter 4 — The Processor – Advanced Material 6

Instruction-Level Parallelism
n Pipelining: executing multiple instructions in parallel
n To increase ILP you need:

n Deeper pipeline
n Less work per stage Þ shorter clock cycle.

n Multiple issue
n Replicate pipeline stages Þ multiple pipelines.
n Start multiple instructions per clock cycle.
n But dependencies reduce this considerably in practice.

Multiple Issue
n Static multiple issue

n Compiler groups instructions into “issue packets”.
n Compiler must detect and avoid hazards

n E.g., Intel Itanium and Itanium 2 for the IA-64 ISA – EPIC (Explicit
Parallel Instruction Computer).

n 128-bit “bundles” containing three instructions, each 41-bits plus a 5-
bit template field, which specifies which functional unit each
instruction needs.

n Dynamic multiple issue
n CPU examines instruction stream and chooses instructions to

issue each cycle.
n Compiler can help by reordering instructions.
n CPU must resolve hazards at runtime.

Cptr350 Chapter 4 — The Processor – Advanced Material 7

Multiple-Issue Datapath Responsibilities
n Must handle, with a combination of hardware and software

fixes, the fundamental limitations of:
n How many instructions to issue in one clock cycle.
n Data hazards

n Limitation is more severe in a Superscaler/VLIW processor
due to a (usually) lower ILP.

n Control hazards
n Must lean heavily on dynamic branch prediction to help

resolve the ILP issue.
n Structural hazards

n A SS/VLIW processor has a much larger number of potential
resource conflicts.

n Functional units may have to arbitrate for result busses and
register-file write ports.

n Resource conflicts can be eliminated by duplicating the
resource or by pipelining the resource.

Static Multiple Issue Machines (VLIW)
n Static multiple-issue processors (aka Very Long Instruction

Word (VLIW) use the compiler to statically decide which
instructions to issue and execute simultaneously:
n Issue packet – the set of instructions that are bundled together

and issued in one clock cycle – think of it as one large
instruction with multiple operations.

n The mix of instructions in the packet is usually restricted – a
single “instruction” with several predefined fields.

n The compiler does static branch prediction and code scheduling
to reduce control or eliminate data hazards.

n VLIW’s have
n Multiple functional units.
n Multi-ported register files.
n Wide program busses.

Cptr350 Chapter 4 — The Processor – Advanced Material 8

Loop Unrolling
n Loop Unrolling is a loop transformation technique that

attempts to optimize a program's execution speed at the
expense of its binary size (space-time tradeoff). The
transformation can be undertaken manually by the
programmer or by an optimizing compiler.

n The goal of loop unrolling is to increase a program's
speed by reducing (or eliminating) instructions that
control the loop, such as pointer arithmetic and "end of
loop" tests on each iteration; reducing branch penalties;
as well as "hiding latencies, in particular, the delay in
reading data from memory". To eliminate this overhead,
loops can be re-written as a repeated sequence of
similar independent statements.

Loop Unrolling Example
n A procedure in a computer program is to delete 100 items from a

collection. This is normally accomplished by means of a for-loop
which calls the function delete(item_number).

Normal loop After loop unrolling

int x;
for (x = 0; x < 100; x++)
{

delete(x);
}

int x;
for (x = 0; x < 100; x+=5)
{

delete(x);
delete(x+1);
delete(x+2);
delete(x+3);
delete(x+4);

}

Cptr350 Chapter 4 — The Processor – Advanced Material 9

Dynamic Pipeline Scheduling
n Allow the CPU to execute instructions out of order to

avoid stalls
n But commit results to registers in order.

n Example
lw $t0, 20($s2)
addu $t1, $t0, $t2
sub $s4, $s4, $t3

slti $t5, $s4, 20

n Can start sub while addu is waiting for lw.

Dynamically Scheduled CPU

Results also sent
to any waiting

reservation stations

Reorder buffer for
register writes

Can supply
operands for

issued instructions

Preserves
dependencies

Hold pending
operands

Cptr350 Chapter 4 — The Processor – Advanced Material 10

Register Renaming
n Reservation stations and the reorder buffer effectively

provide register renaming.
n On instruction issue to reservation station

n If operand is available in register file or reorder buffer
n Copied to reservation station.
n No longer required in the register; can be overwritten.

n If operand is not yet available
n It will be provided to the reservation station by a functional

unit.
n Register update may not be required.

In-Order vs Out-of-Order
n Instruction fetch and decode units are required to issue

instructions in-order so that dependencies can be tracked.
n The commit unit is required to write results to registers and

memory in program fetch order so that:
n If exceptions occur, the only registers updated will be those

written by instructions before the one causing the exception.
n If branches are mispredicted, those instructions executed after

the mispredicted branch don’t change the machine state (i.e.,
we use the commit unit to correct incorrect speculation).

n Although the front end (fetch, decode, and issue) and back
end (commit) of the pipeline run in-order, the FUs are free to
initiate execution whenever the data they need is available
which can leads to out-of-order execution.
n Allowing out-of-order execution increases the amount of ILP.

Cptr350 Chapter 4 — The Processor – Advanced Material 11

Speculation
n Speculation is used to allow execution of future

instructions that (may) depend on the speculated
instruction:
n Speculate on the outcome of a conditional branch (branch

prediction).
n Speculate that a store (for which we don’t yet know the

address) that precedes a load, does not refer to the same
address, allowing the load to be scheduled before the store
(load speculation).

n Must have (hardware and/or software) mechanisms for:
n Checking to see if the guess was correct.
n Recovering from the effects of the instructions that were

executed speculatively if the guess was incorrect.
n Ignore and/or buffer exceptions created by speculatively

executed instructions until it is clear that they should
really occur.

Predication
n Predication can be used to eliminate branches by

making the execution of an instruction dependent on a
“predicate”, e.g.,

if (p) {statement 1} else {statement 2}
would normally compile using two branches. With
predication, it would compile as:

(p) statement 1
(~p) statement 2

n Predication can be used to speculate as well as to
eliminate branches.

Cptr350 Chapter 4 — The Processor – Advanced Material 12

Dependencies Review
n When more than one instruction references a particular location for

an operand, either reading it (as an input) or writing it (as an output),
executing those instructions in an order different from the original
program order can lead to three kinds of data hazards:
n Read-after-write (RAW): A read from a register or memory location must

return the value placed there by the last write in program order, not some
other write. This is referred to as a true dependency or flow
dependency, and requires the instructions to execute in program order.

n Write-after-write (WAW): Successive writes to a particular register or
memory location must leave that location containing the result of the
second write. This can be resolved by squashing (synonyms: cancelling,
annulling, mooting) the first write if necessary. WAW dependencies are
also known as output dependencies.

n Write-after-read (WAR): A read from a register or memory location must
return the last prior value written to that location, and not one written
programmatically after the read. This is the sort of false dependency
that can be resolved by renaming. WAR dependencies are also known as
anti-dependencies.

Dependency Example

n With out-of-order execution, a later instruction may execute before
a previous instruction so the hardware needs to resolve both read-
before-write and write-before-write data hazards

§ If the lw write to $t0 is executed after the addu write, then the
sub gets an incorrect value for $t0

§ The addu has an output dependency on the lw – write-before-
write

- The issuing of the addu might have to be stalled if its result could
later be overwritten by a previous instruction that takes longer to
complete.

lw $t0,0($s1)
addu $t0,$t1,$s2
. . .
sub $t2, $t0, $s2

Cptr350 Chapter 4 — The Processor – Advanced Material 13

Antidependencies
n We also must deal with antidependencies – when a

later instruction (that executes earlier) produces a data
value that destroys a data value used as a source in an
earlier instruction (that executes later).

R3 := R3 * R5
R4 := R3 + 1
R3 := R5 + 1

§ The constraint is similar to that of true data
dependencies, except reversed:
§ Instead of the later instruction using a value (not yet) produced

by an earlier instruction (read before write), the later instruction
produces a value that destroys a value that the earlier
instruction (has not yet) used (write before read).

Antidependency
True data dependency

Output dependency

Does Multiple Issue Work?

n Yes, but not as much as we’d like.
n Programs have real dependencies that limit ILP.
n Some dependencies are hard to eliminate.
n Some parallelism is hard to expose

n Limited window size during instruction issue.
n Memory delays and limited bandwidth

n Hard to keep pipelines full.
n Speculation can help if done well.

Cptr350 Chapter 4 — The Processor – Advanced Material 14

Fallacies
n Pipelining is easy:

n The basic idea is easy.
n The devil is in the details, e.g., detecting data hazards.

n Pipelining is independent of technology:
n So why haven’t we always done pipelining?
n More transistors make more advanced techniques

feasible.
n Pipeline-related ISA design needs to take account of

technology trends.

Concluding Remarks

n ISA influences design of datapath and controller
n Poor ISA design can make pipelining harder.

n Datapath and control influence design of ISA.
n Pipelining improves instruction throughput using

parallelism:
n More instructions completed per second.
n Latency for each instruction is not reduced.

n Hazards: structural, data, control.
n Multiple issue and dynamic scheduling (ILP)

n Dependencies limit achievable parallelism.
n Complexity leads to the power wall.

