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Advanced Issues

Review:  Pipeline Hazards
n Structural hazards

n Design pipeline to eliminate structural hazards.
n Data hazards – read before write

n Use data forwarding inside the pipeline.
n For those cases that forwarding won’t solve (e.g., load-use) 

include hazard hardware to insert stalls in the instruction stream.
n Control hazards – beq, bne,j,jr,jal

n Stall – hurts performance.
n Move decision point as early in the pipeline as possible – reduces 

number of stalls at the cost of additional hardware.
n Delay decision (requires compiler support) – may not feasible for 

deeper pipes.
n Predict – with even more hardware, can reduce the impact of 

control hazard stalls even further if the branch prediction (Branch 
History Table) is correct and if the branched-to instruction is 
cached (Branch Table Buffer).
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Exceptions and Interrupts

n “Unexpected” events requiring attention
n Different ISAs use the terms differently.

n Exceptions (sometimes called Traps)
n Arises within the CPU

n e.g., undefined opcode, overflow, syscall, divide by zero, …

n Interrupt
n Comes from an external I/O controller.

n Dealing with them without sacrificing performance is 
impossible.

Handling Exceptions

n In MIPS, exceptions managed by a System Control 
Coprocessor (CP0).

n Save PC of offending (or interrupted) instruction in the  
Exception Program Counter (EPC).

n Save indication of the problem in the Cause Register.
n Jump to handler at hard address 8000 0018.
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An Alternate Mechanism
n Vectored Interrupts

n Handler address determined by the cause. This is very 
common in embedded processors.

n Example:
n Undefined opcode: C000 0000
n Overflow: C000 0020
n …: C000 0040

n Instructions either:
n Deal with the interrupt.
n Jump to the real handler.
n Pass control to the OS.

Multiple Exceptions

n Pipelining overlaps multiple instructions
n Could have multiple exceptions at once.

n Simple approach: deal with exception from earliest 
instruction
n Flush subsequent instructions.
n “Precise” vs. “imprecise” exception approach.

n In complex pipelines
n Multiple instructions issued per cycle.
n Out-of-order completion.
n Maintaining precise exceptions is difficult.
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Precise vs. Imprecise Exceptions

n An interrupt that leaves the machine in a well-defined state is 
called a precise interrupt. Such an interrupt has four 
properties:
n The Program Counter (PC) is saved in a known place.
n All instructions before the one pointed to by the PC have fully executed.
n No instruction beyond the one pointed to by the PC has been executed.
n The execution state of the instruction pointed to by the PC is known.

n An interrupt that does not meet these requirements is called 
an imprecise interrupt.

Where in the Pipeline Exceptions Occur

n Arithmetic overflow:

n Undefined instruction:

n TLB or page fault:

n I/O service request:

n Hardware malfunction:

A
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n Multiple exceptions can occur simultaneously in a single
clock cycle.

http://en.wikipedia.org/wiki/Program_counter
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Extracting Yet More Performance
n Superpipelining - Increasing the depth of the pipeline to 

increase the clock rate
n The more stages in the pipeline, the more forwarding/hazard 

hardware needed and the more pipeline latch overhead (i.e., the 
pipeline latch accounts for a larger and larger percentage of the 
clock cycle time).

n Multiple-issue – Fetching and executing more than one 
instruction at a time (expand every pipeline stage to 
accommodate multiple instructions)

n The instruction execution rate, CPI, will be less than 1, so 
instead we use IPC - instructions per clock cycle

n E.g., a 6 GHz, four-way multiple-issue processor can 
execute at a peak rate of 24 billion instructions per second 
with a best case CPI of 0.25  or a best case IPC of 4.

Types of Parallelism

n Instruction-level parallelism (ILP) – a measure of the 
average number of instructions in a program that a 
processor might be able to execute at the same time
n Mostly determined by the number of data dependencies 

and control dependencies in relation to the number of 
other instructions.

n Machine-level parallelism – a measure of the ability of 
the processor to take advantage of the ILP of the 
program
n Determined by the number of instructions that can be 

fetched and executed at the same time.
n To achieve high performance, we need both ILP and 

machine-level parallelism.
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Instruction-Level Parallelism
n Pipelining: executing multiple instructions in parallel
n To increase ILP you need:

n Deeper pipeline
n Less work per stage Þ shorter clock cycle.

n Multiple issue
n Replicate pipeline stages Þ multiple pipelines.
n Start multiple instructions per clock cycle.
n But dependencies reduce this considerably in practice.

Multiple Issue
n Static multiple issue

n Compiler groups instructions into “issue packets”.
n Compiler must detect and avoid hazards

n E.g., Intel Itanium and Itanium 2 for the IA-64 ISA – EPIC (Explicit 
Parallel Instruction Computer).

n 128-bit “bundles” containing three instructions, each 41-bits plus a 5-
bit template field, which specifies which functional unit each 
instruction needs.

n Dynamic multiple issue
n CPU examines instruction stream and chooses instructions to  

issue each cycle.
n Compiler can help by reordering instructions.
n CPU must resolve hazards at runtime.
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Multiple-Issue Datapath Responsibilities
n Must handle, with a combination of hardware and software 

fixes, the fundamental limitations of:
n How many instructions to issue in one clock cycle.
n Data hazards

n Limitation is more severe in a Superscaler/VLIW processor 
due to a (usually) lower ILP.

n Control hazards
n Must lean heavily on dynamic branch prediction to help 

resolve the ILP issue.
n Structural hazards

n A SS/VLIW processor has a much larger number of potential 
resource conflicts.

n Functional units may have to arbitrate for result busses and 
register-file write ports.

n Resource conflicts can be eliminated by duplicating the 
resource or by pipelining the resource.

Static Multiple Issue Machines (VLIW)
n Static multiple-issue processors (aka Very Long Instruction 

Word (VLIW) use the compiler to statically decide which 
instructions to issue and execute simultaneously:
n Issue packet – the set of instructions that are bundled together 

and issued in one clock cycle – think of it as one large
instruction with multiple operations.

n The mix of instructions in the packet is usually restricted – a 
single “instruction” with several predefined fields.

n The compiler does static branch prediction and code scheduling 
to reduce control or eliminate data hazards.

n VLIW’s have
n Multiple functional units.
n Multi-ported register files.
n Wide program busses.
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Loop Unrolling
n Loop Unrolling is a loop transformation technique that 

attempts to optimize a program's execution speed at the 
expense of its binary size (space-time tradeoff). The 
transformation can be undertaken manually by the 
programmer or by an optimizing compiler.

n The goal of loop unrolling is to increase a program's 
speed by reducing (or eliminating) instructions that 
control the loop, such as pointer arithmetic and "end of 
loop" tests on each iteration; reducing branch penalties; 
as well as "hiding latencies, in particular, the delay in 
reading data from memory". To eliminate this overhead, 
loops can be re-written as a repeated sequence of 
similar independent statements.

Loop Unrolling Example
n A procedure in a computer program is to delete 100 items from a 

collection. This is normally accomplished by means of a for-loop 
which calls the function delete(item_number).

Normal loop After loop unrolling

int x;
for (x = 0; x < 100; x++)
{ 

delete(x);
} 

int x;
for (x = 0; x < 100; x+=5)
{

delete(x);
delete(x+1);
delete(x+2);
delete(x+3);
delete(x+4);

} 
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Dynamic Pipeline Scheduling
n Allow the CPU to execute instructions out of order to 

avoid stalls
n But commit results to registers in order.

n Example
lw $t0, 20($s2)
addu $t1, $t0, $t2
sub $s4, $s4, $t3

slti $t5, $s4, 20

n Can start sub while addu is waiting for lw.

Dynamically Scheduled CPU

Results also sent 
to any waiting 

reservation stations

Reorder buffer for 
register writes

Can supply 
operands for 

issued instructions

Preserves 
dependencies

Hold pending 
operands
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Register Renaming
n Reservation stations and the reorder buffer effectively 

provide register renaming.
n On instruction issue to reservation station

n If operand is available in register file or reorder buffer
n Copied to reservation station.
n No longer required in the register; can be overwritten.

n If operand is not yet available
n It will be provided to the reservation station by a functional 

unit.
n Register update may not be required.

In-Order vs Out-of-Order
n Instruction fetch and decode units are required to issue 

instructions in-order so that dependencies can be tracked.
n The commit unit is required to write results to registers and 

memory in program fetch order so that:
n If exceptions occur, the only registers updated will be those 

written by instructions before the one causing the exception.
n If branches are mispredicted, those instructions executed after 

the mispredicted branch don’t change the machine state (i.e., 
we use the commit unit to correct incorrect speculation).

n Although the front end (fetch, decode, and issue) and back 
end (commit) of the pipeline run in-order, the FUs are free to 
initiate execution whenever the data they need is available 
which can leads to out-of-order execution.
n Allowing out-of-order execution increases the amount of ILP.
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Speculation
n Speculation is used to allow execution of future 

instructions that (may) depend on the speculated 
instruction:
n Speculate on the outcome of a conditional branch (branch 

prediction).
n Speculate that a store (for which we don’t yet know the 

address) that precedes a load, does not refer to the same 
address, allowing the load to be scheduled before the store 
(load speculation).

n Must have (hardware and/or software) mechanisms for:
n Checking to see if the guess was correct.
n Recovering from the effects of the instructions that were 

executed speculatively if the guess was incorrect.
n Ignore and/or buffer exceptions created by speculatively 

executed instructions until it is clear that they should 
really occur.

Predication
n Predication can be used to eliminate branches by 

making the execution of an instruction dependent on a 
“predicate”, e.g.,

if (p) {statement 1} else {statement 2}
would normally compile using two branches. With 
predication, it would compile as:

(p) statement 1
(~p) statement 2

n Predication can be used to speculate as well as to 
eliminate branches.
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Dependencies Review
n When more than one instruction references a particular location for 

an operand, either reading it (as an input) or writing it (as an output), 
executing those instructions in an order different from the original 
program order can lead to three kinds of data hazards:
n Read-after-write (RAW):  A read from a register or memory location must 

return the value placed there by the last write in program order, not some 
other write. This is referred to as a true dependency or flow 
dependency, and requires the instructions to execute in program order.

n Write-after-write (WAW):  Successive writes to a particular register or 
memory location must leave that location containing the result of the 
second write. This can be resolved by squashing (synonyms: cancelling, 
annulling, mooting) the first write if necessary. WAW dependencies are 
also known as output dependencies. 

n Write-after-read (WAR):  A read from a register or memory location must 
return the last prior value written to that location, and not one written 
programmatically after the read. This is the sort of false dependency
that can be resolved by renaming. WAR dependencies are also known as 
anti-dependencies. 

Dependency Example

n With out-of-order execution, a later instruction may execute before
a previous instruction so the hardware needs to resolve both read-
before-write and write-before-write data hazards

§ If the lw write to $t0 is executed after the addu write, then the 
sub gets an incorrect value for $t0

§ The addu has an output dependency on the lw – write-before-
write

- The issuing of the addu might have to be stalled if its result could 
later be overwritten by a previous instruction that takes longer to 
complete.

lw $t0,0($s1)
addu $t0,$t1,$s2
. . .
sub $t2, $t0, $s2
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Antidependencies
n We also must deal with antidependencies – when a 

later instruction (that executes earlier) produces a data 
value that destroys a data value used as a source in an 
earlier instruction (that executes later).

R3 := R3 * R5
R4 := R3 + 1
R3 := R5 + 1

§ The constraint is similar to that of true data 
dependencies, except reversed:
§ Instead of the later instruction using a value (not yet) produced 

by an earlier instruction (read before write), the later instruction 
produces a value that destroys a value that the earlier 
instruction (has not yet) used (write before read).

Antidependency
True data dependency

Output dependency

Does Multiple Issue Work?

n Yes, but not as much as we’d like.
n Programs have real dependencies that limit ILP.
n Some dependencies are hard to eliminate.
n Some parallelism is hard to expose

n Limited window size during instruction issue.
n Memory delays and limited bandwidth

n Hard to keep pipelines full.
n Speculation can help if done well.
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Fallacies
n Pipelining is easy:

n The basic idea is easy.
n The devil is in the details, e.g., detecting data hazards.

n Pipelining is independent of technology:
n So why haven’t we always done pipelining?
n More transistors make more advanced techniques 

feasible.
n Pipeline-related ISA design needs to take account of 

technology trends.

Concluding Remarks

n ISA influences design of datapath and controller
n Poor ISA design can make pipelining harder.

n Datapath and control influence design of ISA.
n Pipelining improves instruction throughput using 

parallelism:
n More instructions completed per second.
n Latency for each instruction is not reduced.

n Hazards: structural, data, control.
n Multiple issue and dynamic scheduling (ILP)

n Dependencies limit achievable parallelism.
n Complexity leads to the power wall.


